

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4723

Core Mathematics 3

Wednesday

18 JANUARY 2006

Afternoon

1 hour 30 minutes

Additional materials: 8 page answer booklet Graph paper

Graph paper List of Formulae (MF1)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Show that $\int_{2}^{8} \frac{3}{x} dx = \ln 64$. [4]

- 2 Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation $\sec^2 \theta = 4 \tan \theta 2$. [5]
- 3 (a) Differentiate $x^2(x+1)^6$ with respect to x. [3]
 - (b) Find the gradient of the curve $y = \frac{x^2 + 3}{x^2 3}$ at the point where x = 1. [3]

The function f is defined by $f(x) = 2 - \sqrt{x}$ for $x \ge 0$. The graph of y = f(x) is shown above.

5

(i) State the range of f. [1]

(ii) Find the value of ff(4). [2]

(iii) Given that the equation |f(x)| = k has two distinct roots, determine the possible values of the constant k. [2]

The diagram shows the curves $y = (1 - 2x)^5$ and $y = e^{2x-1} - 1$. The curves meet at the point $(\frac{1}{2}, 0)$. Find the exact area of the region (shaded in the diagram) bounded by the y-axis and by part of each curve.

6 (a)

t	0	10	20
X	275	440	

The quantity X is increasing exponentially with respect to time t. The table above shows values of X for different values of t. Find the value of X when t = 20.

(b) The quantity Y is decreasing exponentially with respect to time t where

$$Y = 80e^{-0.02t}$$
.

(i) Find the value of t for which Y = 20, giving your answer correct to 2 significant figures.

[3]

(ii) Find by differentiation the rate at which Y is decreasing when t = 30, giving your answer correct to 2 significant figures. [3]

The diagram shows the curve with equation $y = \cos^{-1} x$.

- (i) Sketch the curve with equation $y = 3\cos^{-1}(x-1)$, showing the coordinates of the points where the curve meets the axes. [3]
- (ii) By drawing an appropriate straight line on your sketch in part (i), show that the equation $3\cos^{-1}(x-1) = x$ has exactly one root. [1]
- (iii) Show by calculation that the root of the equation $3\cos^{-1}(x-1) = x$ lies between 1.8 and 1.9. [2]
- (iv) The sequence defined by

$$x_1 = 2,$$
 $x_{n+1} = 1 + \cos(\frac{1}{3}x_n)$

converges to a number α . Find the value of α correct to 2 decimal places and explain why α is the root of the equation $3\cos^{-1}(x-1) = x$. [5]

[Questions 8 and 9 are printed overleaf.]

4723/Jan06

9

The diagram shows part of the curve $y = \ln(5 - x^2)$ which meets the x-axis at the point P with coordinates (2, 0). The tangent to the curve at P meets the y-axis at the point Q. The region A is bounded by the curve and the lines x = 0 and y = 0. The region B is bounded by the curve and the lines PQ and x = 0.

- (i) Find the equation of the tangent to the curve at P.
- (ii) Use Simpson's Rule with four strips to find an approximation to the area of the region A, giving your answer correct to 3 significant figures. [4]
- (iii) Deduce an approximation to the area of the region B.
- (i) By first writing $\sin 3\theta$ as $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta. \tag{4}$$

[5]

[2]

[3]

(ii) Determine the greatest possible value of

$$9\sin\left(\frac{10}{3}\alpha\right) - 12\sin^3\left(\frac{10}{3}\alpha\right),$$

and find the smallest positive value of α (in degrees) for which that greatest value occurs.

(iii) Solve, for
$$0^{\circ} < \beta < 90^{\circ}$$
, the equation $3 \sin 6\beta \csc 2\beta = 4$. [6]

- 1 Obtain integral of form $k \ln x$
- M1 [any non-zero constant k; or equiv such as $k \ln 3x$

Obtain 3 ln 8 - 3 ln 2

- A1 [or exact equiv]
- Attempt use of at least one relevant log property M1
- [would be earned by initial $\ln x^3$]
- Obtain 3 ln 4 or ln 8^3 ln 2^3 and hence ln 64 A1 4 [AG; with no errors]
- Attempt use of identity linking $\sec^2 \theta$, 2
 - $\tan^2 \theta$ and 1

- **M1**
 - Ito write eqn in terms of tan θ
- Obtain $\tan^2 \theta 4 \tan \theta + 3 = 0$
- A1
- [or correct unsimplified equiv]
- Attempt solution of quadratic eqn to find two values
 - **M1**
- [any 3 term quadratic eqn in tan θ] [after correct solution of eqn]
- Obtain at least two correct answers Obtain all four of 45, 225, 71.6, 251.6
- A1 A1 5
 - [allow greater accuracy or angles to nearest degree - and no other answers between 0 and 360]

- 3 (a) Attempt use of product rule
- **M1**
- A1

Obtain $2x(x+1)^6$... Obtain ... + $6x^2(x+1)^5$

A1 3 [or equivs; ignore subsequent attempt at simplification]

[involving ... + ...]

- Attempt use of quotient rule (b)
- **M1** [or, with adjustment, product rule; allow u / v confusion]
- Obtain $\frac{(x^2-3)2x-(x^2+3)2x}{(x^2-3)^2}$
- A1 [or equiv]

Obtain -3

A1 3 [from correct derivative only]

(i) State $y \le 2$

- B1 1 [or equiv; allow <; allow any letter or none]
- (ii) Show correct process for composition of functions Obtain 0 and hence 2
 - [numerical or algebraic] A1 2 [and no other value]
- (iii) State a range of values with 2 as one end-point M1 State $0 < k \le 2$
 - [continuous set, not just integers] [with correct \leq and \leq now] A1 2
- Obtain integral of form $k(1-2x)^6$ 5
- **M1** [any non-zero constant k]

Obtain correct $-\frac{1}{12}(1-2x)^6$

A1 [or unsimplified equiv; allow + c]

Use limits to obtain $\frac{1}{12}$

- A1 [or exact (unsimplified) equiv]
- Obtain integral of form $k e^{2x-1}$
- **A1** [or equiv; allow + c]
- Obtain correct $\frac{1}{2}e^{2x-1} x$ Use limits to obtain $-\frac{1}{2}e^{-1}$
- A1 [or exact (unsimplified) equiv]
- Show correct process for finding required area
- [at any stage of solution; if process involves two definite integrals, second must be negative]

[or equiv; any non-zero constant k]

Obtain $\frac{1}{12} + \frac{1}{2}e^{-1}$

A1 8 [or exact equiv; no +c]

M1

M1

Obtain 0.88

respectively

A1 3 [or greater accuracy; allow -0.88]

6 (a)	Either:	State proportion 440/275 Attempt calculation involving	B 1		
		proportion	M1		[involving multn and X value]
	Or:	Obtain 704 Use formula of form $275e^{kt}$ or $275a^t$	A1 M1	_	[or equiv]
		Obtain $k = 0.047$ or $a = \sqrt[10]{1.6}$	A1		[or equiv]
		Obtain 704	A1	(3)	[allow ±0.5]
(b)(i	i) Attemp	t correct process involving logarithm	M1		[or equiv including systematic trial and improvement attempt]
	Obtain	$\ln \frac{20}{80} = -0.02t$	A1		[or equiv]
	Obtain	69	A1	3	[or greater accuracy; scheme for T&I: M1A2]
(ii	i)Differe	ntiate to obtain $k e^{-0.02t}$	M1		[any constant k different from 80]
	Obtain	$-1.6e^{-0.02t}$ (or $1.6e^{-0.02t}$)	A1		[or unsimplified equiv]

7 (i)	Sketch curve showing (at least) translation in x direction Show correct sketch with one of 2 and 3π indicated and with other one of 2 and 3π indicated	M1 A1 A1		[either positive or negative]
(ii)	Draw straight line through O with positive gradient	B 1	1	[label and explanation not required]
(iii)	Attempt calculations using 1.8 and 1.9 Obtain correct values and indicate	M1		[allow here if degrees used]
	change of sign	A 1	2	[or equiv; $x = 1.8$: LHS = 1.93, diff = 0.13; $x = 1.9$: LHS = 1.35, diff = -0.55; radians needed now]
(iv)	Obtain correct first iterate 1.79 or 1.78 Attempt correct process to produce	B1		[or greater accuracy]
	at least 3 iterates	M1		
	Obtain 1.82	A1		[answer required to exactly 2 d.p.; $2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200$; SR: answer 1.82 only - B2]
	Attempt rearrangement of $3\cos^{-1}(x-1) = x$			
	or of $x = 1 + \cos(\frac{1}{3}x)$	M1		[involving at least two steps]
	Obtain required formula or equation	4.1	=	

A1 5

8	(i)	Differentiate to obtain $kx(5-x^2)^{-1}$	M1		[any non-zero constant]
		Obtain correct $-2x(5-x^2)^{-1}$	A1		[or equiv]
		Obtain -4 for value of derivative	A1		
		Attempt equation of straight line through (2, 0)			
		numerical value of gradient obtained from			
		attempt at derivative	M1		[not for attempt at eqn of normal]
		Obtain $y = -4x + 8$	A1	5	[or equiv]
	(::)	State or imply $h = 1$	В1		
	(ii)	State or imply $h = \frac{1}{2}$	DI		
		Attempt calculation involving attempts			
		at y values	M1		[addition with each of coefficients 1, 2, 4 occurring at least once]
		Obtain $k(\ln 5 + 4\ln 4.75 + 2\ln 4 + 4\ln 2.75 + \ln 1)$	A1		[or equiv perhaps with decimals; any constant k]
		Obtain 2.44	A1	4	[allow ±0.01]
	(iii)	Attempt difference of two areas	M1		[allow if area of their triangle < area A]
		Obtain $8-2.44$ and hence 5.56	A11	2	[following their tangent and area of A providing answer positive]

9 (i)	State $\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ Use at least one of $\sin 2\theta = 2 \sin \theta \cos \theta$ and			
	Use at least one of $\sin 2\theta = 2 \sin \theta \cos \theta$ and $\cos 2\theta = 1 - 2 \sin^2 \theta$	B1		
	Attempt complete process to express in terms of $\sin \theta$	M1		[using correct identities]
	Obtain $3 \sin \theta - 4 \sin^3 \theta$	A1	4	[AG; all correctly obtained]
(ii)	State 3	B 1		•
` '	Obtain expression involving $\sin 10\alpha$	M1		[allow θ/α confusion]
	Obtain 9	A1	3	[and no other value]
(iii)	Recognise cosec 2β as $\frac{1}{\sin 2\beta}$	B1		[allow θ/β confusion]
	Attempt to express equation in terms			
	of $\sin 2\beta$ only	M1		[or equiv involving $\cos 2\beta$]
	Attempt to find non-zero value of $\sin 2\beta$	M1		[or of $\cos 2\beta$]
	Obtain at least $\sin 2\beta = \sqrt{\frac{5}{12}}$	A1		[or equiv, exact or approx]
	Attempt correct process to find two values of β	M1		[provided equation is $\sin 2\beta = k$; or equiv with $\cos 2\beta$]
	Obtain 20.1, 69.9	A1	6	[and no others between 0 and 90]